Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication

نویسندگان

  • Yongqing Zhu
  • Norman C Ellstrand
  • Bao-Rong Lu
چکیده

The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed-shattering plants from populations of the wild progenitor of cultivated rice (Oryza rufipogon complex) being homozygous for the putative "nonshattering" sh4 alleles. We tested the sh4 hypothesis for the domestication of cultivated rice by obtaining genotypes and phenotypes for a diverse set of samples of wild, weedy, and cultivated rice accessions. The cultivars were fixed for the putative "nonshattering" allele and nonshattering phenotype, but wild rice accessions are highly polymorphic for the putative "nonshattering" allele (frequency ∼26%) with shattering phenotype. All weedy rice accessions are the "nonshattering" genotype at the sh4 locus but with shattering phenotype. These data challenge the widely accepted hypothesis that a single nucleotide mutation ("G"/"T") of the sh4 locus is the major driving force for rice domestication. Instead, we hypothesize that unidentified shattering loci are responsible for the initial domestication of cultivated rice through reduced seed shattering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allelic interaction at seed-shattering loci in the genetic backgrounds of wild and cultivated rice species.

It is known that the common cultivated rice (Oryza sativa) was domesticated from Asian wild rice, O. rufipogon. Among the morphological differences between them, loss of seed shattering is one of the striking characters specific for the cultivated forms. In order to understand the genetic control on shattering habit, QTL analysis was carried out using BC(2)F(1) backcross population between O. s...

متن کامل

Molecular evolution of shattering loci in U.S. weedy rice.

Cultivated rice fields worldwide are plagued with weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Here, we inve...

متن کامل

Mapping of seed shattering loci provides insights into origin of weedy rice and rice domestication.

Seed shattering is an important trait that distinguishes crop cultivars from the wild and weedy species. The genetics of seed shattering was investigated in this study to provide insights into rice domestication and the evolution of weedy rice. Quantitative trait locus (QTL) analysis, conducted in 2 recombinant inbred populations involving 2 rice cultivars and a weedy rice accession of the sout...

متن کامل

Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia.

Weedy rice is a close relative of domesticated rice (Oryza sativa) that competes aggressively with the crop and limits rice productivity worldwide. Most genetic studies of weedy rice have focused on populations in regions where no reproductively compatible wild Oryza species occur (North America, Europe and northern Asia). Here, we examined the population genetics of weedy rice in Malaysia, whe...

متن کامل

SHAT1, A new player in seed shattering of rice.

A major event in domestication of crops was the elimination of seed shattering, so that instead of falling to the ground, seeds stayed on the stalk until farmers could harvest them (Doebley, 2006). The SH4 (for grain shattering quantitative trait locus on chromosome4) and qSH1 (for quantitative trait locus of seed shattering on chromosome1) transcription factor genes are known to play key roles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012